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We propose a model to represent the motility of social elements. The model is completely deterministic,
possesses a small number of parameters, and exhibits a series of properties that are reminiscent of the behavior
of comunities in social-ecological competition; these are �i� similar individuals attract each other; �ii� individu-
als can form stable groups; �iii� a group of similar individuals breaks into subgroups if it reaches a critical size;
�iv� interaction between groups can modify the distribution of the elements as a result of fusion, fission, or
pursuit; �v� individuals can change their internal state by interaction with their neighbors. The simplicity of the
model and its richness of emergent behaviors, such as, for example, pursuit between groups, make it a useful
toy model to explore a diversity of situations by changing the rule by which the internal state of individuals is
modified by the interactions with the environment.
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I. INTRODUCTION

Many living systems display collective organized dis-
placements. Bird flocks, fish schools, animal herds, bacterial
colonies, and swarms are examples of such behavior. The
interactions between the traveling individuals determine the
collective motion. This kind of phenomenon has been mod-
eled by physicists �1–8�. In the above models all elements in
the system are identical, but Shibata and Kaneko �9� consid-
ered a coupled map gas in which each element is character-
ized by an internal state that evolves as a result of interac-
tions with its neighbors and, additionally, the forces between
element pairs depend on their internal states. In �9� �see also
�10�� the total force acting on a given element i is the sum of

pair forces F� i,j exerted by each of the elements j in its vicin-

ity, and F� i,j =−F� j,i. This kind of reciprocity is appropriate to
describe many physical systems, but in social systems the
reaction of an individual to its environment is usually the
result of a global evaluation instead of an evaluation of the
sum of neighbors’ actions. In other words, the reaction of a
social individual i to the presence of individual j does not
have the same intensity as and the opposite direction to the
reaction of j to the presence of i. In particular, persecution

and flight are not possible if F� i,j =−F� j,i. This kind of behavior
requires a global evaluation of the environment before a de-
cision to initiate a persecution or an escape.

This paper is organized as follows. In Sec. II we present a
simple model of interacting motile elements which display
pattern dynamics that evoke some basic behaviors of social
comunities. The interactions of the motile element have a
finite range and modify both their internal states and their
positions. The functional form of the coupling of an element
with its vicinity allows the formation of groups, fusion and
fission of groups, and persecution and flight of groups, be-
havior that is observed in many species �11–15�. In Sec. III
we analyze the properties of an isolated group as a function

of its size and obtain the maximum density of elements for a
compact configuration of isolated groups. In Sec. IV we
show detailed simulations in a two-dimensional space for
three cases of internal dynamics corresponding to �i� a ho-
mogeneous and stationary internal state, �ii� two stationary
but opposite-sign internal states, and �iii� an internal dynam-
ics with two chaotic attractors. We describe the main changes
in the pattern dynamics as a function of the density of ele-
ments in the system. A summary and a brief discusion of the
results and the possible applications of this model are given
in Sec. V.

II. THE SOCIAL GAS MODEL

We propose a model of social motility that exhibits the
following properties: �i� similar individuals attract each
other; �ii� individuals can form stable groups; �iii� a group of
similar individuals breaks into subgroups if it reaches a criti-
cal size; �iv� interaction between groups can modify the dis-
tribution of the elements as a result of fusion, fission, and
pursuit; �v� individuals can change their internal state by
interaction with their neighbors. We consider a system of N
motile elements where each element i is characterized at dis-
crete time t by a state xt

i and a position vector rt
i in a

d-dimensional space. The dynamics of the system is given by
the following set of equations:

xt+1
i = �1 − ��f�xt
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�
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The evolution of both the state and the vector position of
element i depends on its interactions with the elements in its
neighborhood, �t

i, such that �t
i= 	j : �rt

j −rt
i��R
. The param-

eter � expresses the coupling intensity between the states of
elements, f�x� is the functional form that governs the internal
dynamics of each element, and nt

i is the number of neighbors
of the ith element.*parravan@ula.ve
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In Eq. �2�, the first factor is a vector that determines the
direction of motion of element i. Note that the influence of
the neighboring elements on determining the direction of
motion of i depends only on their angular distribution with
respect to element i; the greater the asymmetry of the angular
distribution of neighbors, the greater the magnitude of the
displacement of i. The second factor xt+1

i � j��t
ixt+1

j gives the
sense of motion, and it can be interpreted as the “affinity” of
i for its neighborhood; if the affinity is positive, the ith ele-
ment will move toward the denser region of the angular dis-
tribution of neighbors, otherwise, the element will move
away from this direction. The parameter � expresses the cou-
pling of an element with its neighborhood; if its value is too
big, groups cannot be formed because the change �rt+1

i −rt
i� is

greater than R. In this way, the magnitude of the displace-
ment depends on the position of the element relative to its
vicinity and the internal states of its neighbors. If the element
is isolated its position will be the same and its internal state
will be determined by f�x�. This model contains a simple
individual strategy based on the ability of individuals to
evaluate their environment and react to it. In most previous
models the influence of neighbors on a given element can be
expressed as the sum of individual contributions �1–3,5–10�,
whereas in our model, due to the product of the two factors
in Eq. �2�, the effect of a neighbor on the motion of a given
element depends on the states and positions of all other
neighbors. This kind of holistic evaluation of the environ-
mental conditions is a model property that allows the study
of the social behavior of individuals with the ability to pro-
cess the bulk of the information they acquire from their
senses and react in consequence.

III. CRITICAL SIZE OF A GROUP AND CRITICAL
DENSITY OF GROUPS

A stable group is defined here as a set of elements that in
isolation remain close during long periods of time due to the
mutual interactions. If during evolution each element is a
neighbor of the remaining elements in the group, we say that
the group is a constant vicinity group. On the other hand, if
the neighborhood �t

i of element i in the group is nonstation-
ary, we say that the group is a variable vicinity group. The
diameter of a constant vicinity group is always less than R
and it can vary in time. In contrast, a variable vicinity group
pulsates in a chaotic way and the maximum distance between
elements frequently exceeds R.

To estimate the maximum size that each of the above
types of group can reach, we consider a group where all the
elements maintain their internal state stationary, i.e., xt+1

i

=xt
i=x. For a constant vicinity group we estimate the maxi-

mum size N1 by the condition �rt+1
i −rt

i��R; that is, an ele-
ment i in the periphery of the group remains a neighbor of
the rest of elements in the group in the next time step. As-
suming a uniform distribution of elements on a disk of di-
ameter R, Eq. �2� yields

N1 ���

2

R

�x2 − 1. �3�

In the case of a variable vicinity group, the maximum size
N2 can only be roughly estimated due to the nonuniform
distribution of the elements. Assume that at time t the group
is very asymmetric and the maximum distance between ele-
ments is less than R. Then, at time t+1 this group splits into
two or more noninteracting groups when the condition
�x2�N−1�2�2R is satisfied. Therefore, the maximum size of
a variable vicinity group is given by

N2 �� 2R

�x2 − 1. �4�

In order to characterize the transition from a constant to a
variable vicinity group, we define the quantity

P�	� =
1

	
�
t=1

	
1

N�
i=1

N
nt

i

N − 1
, �5�

which describes the average fraction of elements that belong
to a neighborhood, where the time average is calculated after
discarding a number of transients. Figure 1 shows the
asymptotic quantity P
 as a function of N, with fixed values
of parameters R=5, �=0.01, and x=1. For N�N1=27, the
system forms a constant vicinity group for which P
=1. At
N=N1 the system experiences a transition to a variable vi-
cinity group for which P
�1. At N=N2=31 the system un-
dergoes a structural change, resulting in the splitting into two
or more groups. The values of N at which the above transi-
tions occur agree with the theoretical values of N1 and N2
given by Eqs. �3� and �4�, as indicated in Fig. 1.

The temporal behavior of the system can be characterized
by the distance between the two furthest separated elements
in the group at time t, denoted by Dt. Figure 1 also shows the
bifurcation diagram of Dt as a function of N. For each value
of N, 5000 iterations were discarded as transients and the
next 100 values of Dt were plotted in Fig. 1. The size of the
system was increased by adding one element at a random
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FIG. 1. P
 �continuous curve� and Dt /R �dots� as functions of
the group size N for parameter values R=5, �=0.01, and x=1. The
critical sizes N1 and N2 are indicated. The insets show the typical
configurations for N�N1, N1�N�N2, and N�N2.
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position within a distance R of the center of the group of size
N. We observe that Dt displays a period 2 for N�N1, as a
result of the pulsatory behavior of the size of the constant
vicinity group. For N1�N�N2, Dt shows a chaotic behavior
corresponding to a variable vicinity group. At N=N2+1, the
group becomes unstable and in a few iterations it splits into
two or more stable groups. The insets in Fig. 1 show typical
configurations of the system for the values of parameter in-
dicated.

Now consider the situation when N elements are distrib-
uted on an area of size L�L. When the density =N /L2 is
below a critical value, the elements can self-organize into
different configurations of noninteracting stable groups. In
particular, configurations of identical stable groups of size N1
can support the largest number of elements in the system.
The maximum number of noninteracting groups of size N1
that can exist in a compact arrangement is Ng
= �L /R�2 / �2�3�, so the mean density of elements in the sys-
tem is

1 =
N1Ng

L2 =
��R/2�x2 − 1

2�3R2
. �6�

In spite of the fact that N2 determines the critical number
above which an isolated group splits, when the interactions
between groups are considered the relevant quantity to esti-
mate the maximum density of elements that the system can
support in noninteracting groups is 1 �i.e., 2=2��2R /�x2

−1� / �9�3R2�1 /2�. However, a stable configuration with
all groups of the same size is reached only with very particu-
lar initial conditions. For most initial conditions the groups
in the final stable configurations have a variety of sizes. Con-
sequently, in general the configurations become unstable at a
critical density below 1. From now on, we express the sur-
face densities of elements in the simulation area, =N /L2, in
terms of the normalized density ̃= /1

IV. SOCIAL GAS BEHAVIOR

To illustrate the main properties of the social gas model
we analyze its behavior for three cases of the internal dynam-
ics f�x� in a two-dimensional system with periodic boundary
conditions. We focus on the dependence of the pattern dy-
namics on the particle density  and show results for a par-
ticular set of model parameters, namely, R=10 and �=0.01.

The collective behavior of the system is characterized
here by the average number changes of neighbors per ele-
ment during a number of iterations 	,

S�t,	� =
1

	
�

t

t+	
1

N�
i=1

N

��nt
i�+ � + �nt

i�− �� , �7�

where �nt
i�+���nt

i�−�� is the number of elements that enter
�leave� the vicinity of element i in the time step from t to t
+1. In the following, three cases of internal dynamics f�x�
are considered: �i� the state of all elements is stationary and
homogeneous; �ii� the state of elements is stationary with
one-half of them having the state xn

i =1 and the other half
xt

i=−1; and �iii� the states of elements evolve following Eq.

�1� with an internal dynamics described by the Miller-Huse
map �16�:

f�x� = �− 2a/3 − ax if x � �− 1,− 1/3� ,

ax if x � �− 1/3,1/3� ,

2a/3 − ax if x � �1/3,1� .
�

For these three cases Fig. 2 summarizes the behavior of the
system by means of the quantity S100�t��S�t ,	=100� calcu-
lated each 100 iterations of t. The median S100,med of S100 and
the value S100,10% �S100,90%� below which S100 fall 10% �90%�
of times are shown as functions of ̃. Figure 3 shows snap-
shots of the system state at particular values of ̃. The main
results are as follows.

�i� The case where the state of all elements is stationary
and homogeneous, i.e. f�xt

i�=1, is shown in the top panel of
Fig. 2. Note that S100,med exhibits a discontinuous transition
at ̃c�0.7 from a configuration of noninteracting stable
groups with constant vicinity �as shown in the left top panel
of Fig. 3 and characterized by S100=0� to a configuration
where elements tend to form groups with variable vicinity
that become unstable due to sporadic interactions with neigh-
bor groups �as shown in the right top panel of Fig. 3 and for
which S100�0�. This first-order transition occurs because, as
soon as one of the constant vicinity groups exceeds the criti-
cal size N1, it becomes a variable vicinity group and almost
doubles its radius. In this situation, the groups in the system
can no longer remain isolated and they exchange elements.

FIG. 2. Average number changes of neighbors per element as
function of density when R=10, �=0.01, and L=50. The continu-
ous curve corresponds to the median value S100,med, whereas the
dotted and dashed curves correspond, respectively, to the percen-
tiles S100,10% and S100,90%; see text. Starting from random initial
conditions, these quantities are calculated in the period 104� t�6
�104 and are normalized to the critical size N1 �=39 for these
parameter values�. Top panel: the state of all elements is stationary
and homogeneous, i.e., f�xt

i�=1. Middel panel: the state of elements
is stationary with one-half of them having the state xn

i =1 and the
other half xt

i=−1. Bottom panel: the internal dynamics is given by
the Miller-Huse map with a=1.9 and �=0.3; the dots correspond to
the fraction fband of elements with the majority sign.
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In general, the transition is observed at ̃c�1. Stable con-
figurations for ̃�1 can be reached only for very specific
initial conditions that yield a set of isolated stable groups all
having sizes �N1. For ̃�̃c the system evolves from the
disordered initial random conditions to a stable configuration
like the one shown in the left top panel of Fig. 3. For ̃
�̃c most initial conditions yield stable configurations of
constant vicinity groups �i.e., S=0�; however, cases with one
or more isolated variable vicinity groups can occur �i.e., S
�0�. The number of iterations necessary to reach a stable
configuration quickly increases as ̃ approaches ̃c. Refer-
ence �20� shows movies of the evolution of the system, cor-
responding to the cases shown in the top panels of Fig. 3.

�ii� The case where the state of elements is stationary with
one-half of them having the state xn

i =1 and the other half
xt

i=−1 displays a behavior that is reminiscent of two com-
munities that chase each other. Initially the elements are dis-
tributed at random in the simulation area; they soon tend to
segregate into a number of groups, each group having mem-
bers of the same sign. If the density is low enough, isolated
stable groups soon form, but as the density increases the
interaction among groups makes it difficult to reach a stable
configuration. The existence of states of opposite sign allows
for attractive or repulsive interactions between groups. These
interactions cause the larger groups to pursue and disperse
the smaller groups of contrary sign in frontlike configura-
tions. At the same time, attraction among elements of the
same sign tends to increase the size of existing groups and to

form new ones; however, if a group reaches a size N2 the
group splits. Groups of opposite signs having similar size
attract each other; as a result both groups end up dispersing.
As shown in the middle panel of Fig. 2, S100,med exhibits a
discontinuous transition at ̃c�0.4. As stated above, for ̃
�̃c, each community forms isolated constant vicinity
groups consisting of elements with the same state �as shown
in the middle left panel of Fig. 3�. For ̃�̃c a chasing be-
havior emerges in the system �as shown in the middle right
panel of Fig. 3�. As ̃ increases the system displays a large
degree of disorder, sustained by frequent interactions be-
tween elements of contrary sign that inhibit the persistence
of well-defined groups. Movies of the evolution of the sys-
tem, corresponding to the cases shown in the middle panels
of Fig. 3, are also available at �20�.

�iii� In the last case the states of elements evolve follow-
ing Eq. �1� with the internal dynamics given by the Miller-
Huse map. When a� �1,2�, this map has two symmetric
chaotic band attractors, one with values xt

i�0 and the other
with xt

i�0, separated by a finite gap centered at x=0. For
parameter values a=1.9 and �=0.3, the gap is small and
interactions are sporadically strong enough to produce ele-
ment sign switching. In addition to the chasing phenomenon
observed in case �ii�, now the fleeing elements may change
their sign; a scenario reminiscent of a process of conversion
or assimilation of individuals by larger comunities. In con-
trast to cases �i� and �ii�, in case �iii� the isolated groups
display randomlike motions �i.e., the chaotic evolution of the
state of the elements in a group results in a fluctuating mo-
tion of the geometrical center of the group�. For these param-
eter values the botton panel of Fig. 2 shows S100,med, S100,10%,
and S100,90% as functions of ̃, as well as the fraction fband of
elements that at the final iteration �t=6�104� are in the more
populated chaotic band, the positive or the negative. Even
when the average value of the state of elements in a positive
group is less than 1, in this case  is normalized to the same
value 1 used in cases �i� and �ii�. In contrast to cases �i� and
�ii�, the system never reaches long-term stationary configu-
rations because, even at low densities, the isolated groups
move and eventually interact with other groups, resulting in
an exchanges of neighbors �i.e., S�0�, and sometimes the
internal states of one or more elements change their sign. As
shown in the botton panel of Fig. 2 there is not a clear tran-
sition as in cases �i� and �ii�. Note the change of behavior
when all the elements end up in one band, i.e., fband=1. In
these simulations fband�0.5 for 0.55�̃�0.85. In this range
of ̃ there is exchange of elements between the two chaotic
bands, but an important majority is rarely established, and
consequently the behavior is similar to case �ii�. For ̃�1
transient stable configurations �i.e., S100=0� are not longer
attained. The botton panels of Fig. 3 show snapshots of typi-
cal configurations for low and high densities �see also �20��.
Figure 4 shows the evolution of S100 for ̃=0.4 as well as the
fraction of elements with positive states. Note that at the
beginning the number of positive elements is in a slight mi-
nority, but they soon become the majority, and finally all
elements end positive. As long as fband�t��1, the evolution
of S100 shows quiet periods �S0� followed by active peri-
ods that are usually associated with sign changes. As soon as
fband�t�=1, the active periods reach higher values of S100 and

FIG. 3. Typical configurations at low density �̃=0.3, left-hand
panels� and intermediate density �̃=1, right-hand panels� at a par-
ticular iteration ts. Top, middle, and bottom panels correspond to the
three cases in Fig. 2. The positions of particles at time ts are repre-
sented with circles for positive states and squares for negative
states. The arrows represent the displacement vectors between the
positions at iterations ts−1 and ts+1.
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the quiet periods are characterized by S100=0. This is why in
the botton panel of Fig. 2 S100,10%0 when fband=1 and ̃
�1. For ̃�1 quiet periods are absent �S100,10%�0� because
quasistable configurations are no longer possible.

V. SUMMARY AND CONCLUSIONS

We have analyzed the evolution of the patterns displayed
by a coupled map gas in which the state and position of
elements vary as a result of the interactions with their neigh-
bors. The motion of elements is governed by a rule inspired
by the fact that the reaction of a social individual to its en-
vironment is the result of a global evaluation instead of an
evaluation of the sum of the neighbors’ actions. The pro-
posed model is completely deterministic, possesses a small
number of parameters, and exhibits a series of properties that
are reminiscent of the behavior of comunities in competition
�i.e., fission, fusion, and pursuit of groups of elements�. The
pattern dynamics depend on the model parameters � and R

and on the density of elements =N /L2 in the system area.
We have analyzed the behavior of the system for three cases
of the internal dynamics corresponding to �i� a homogeneous
and stationary internal state, �ii� two stationary but opposite
internal states, and �iii� an internal dynamics with two cha-
otic attractors of opposite sign. In cases �i� and �ii� there is a
transition at a critical value of the density from a stable con-
figuration �quiet mode� to a pattern of interacting groups
�conflict mode�; in case �ii�, pursuit and flight of groups is
the dominant feature in the conflict mode. In case �iii� iso-
lated groups display ramdonlike displacements of their geo-
metrical center and consequently even at low densities the
system displays quiet periods separated by periods of con-
flict. The duration of the conflict periods increases with ;
and for high enough densities quiet periods are absent. Ad-
ditionally, in case �iii� the sign of the elements may change
and in many cases all the elements end up trapped in one of
the chaotic bands.

The results in this paper indicate that this kind of simple
and deterministic model might be used to study basic prop-
erties of the collective social behavior. It must be noted that
this study is by no means complete. Qualitatively different
behaviors are expected for other sets of parameters and in-
ternal dynamics f�x�. For example, for negative values of the
parameter � an isolated pair of elements repel �attract� if the
elements have the same �opposite� sign; if all elements have
the same sign stable groups cannot form, but when both
signs are present an interesting behavior arise in which qua-
sistable inhomogeneous groups form. If a periodic or quasi-
periodic internal dynamic is adopted, the formation of syn-
chronized groups is expected for appropriate parameter
values. If the internal dynamics is multidimensional, as in the
Axelrod model of cultural dissemination �17–19�, the inter-
action among elements can be designed to include more so-
phisticated relations.
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